Analysis of Regression and Neural Network Models in Predicting Patient Visit Volume
Abstract
Predicting patient visit volume plays a crucial role in supporting decision-making and resource allocation in healthcare services. This study aims to compare the performance of Multiple Linear Regression and an Artificial Neural Network (ANN) in forecasting patient visits at a dental clinic, using daily patient visit data and predictor variables such as holidays and promotional activities. Multiple regression was used to capture the linear relationship between the predictor and response variables, while ANN was applied to explore potential non-linear relationships. The results indicate that multiple regression outperformed the ANN, demonstrated by lower Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) values, and provided clearer interpretability, making it more beneficial for healthcare practitioners, particularly in the context of a limited dataset. In contrast, the ANN tended to produce overestimates and was less responsive to short-term variations. Therefore, multiple regression can still be considered a reliable, efficient, and interpretable prediction method for clinical data with a moderate sample size, while future research is recommended to use larger datasets and test other machine learning algorithms to improve the accuracy and generalizability of the results.
References
Al-Taie, Z., Liu, D., Mitchem, J. B., Papageorgiou, C., Kaifi, J. T., Warren, W. C., & Shyu, C. R. (2021). Explainable artificial intelligence in high-throughput drug repositioning for subgroup stratifications with interventionable potential. Journal of Biomedical Informatics, 118, 103792.
Angelini C. (2025). Regression Analysis. Elsevier Ltd.
Bai, L., Lu, K., Dong, Y., Wang, X., Gong, Y., Xia, Y., ... & Li, C. (2023). Predicting monthly hospital outpatient visits based on meteorological environmental factors using the ARIMA model. Scientific Reports, 13(1), 2691.
Basri, H. (2018). Pemodelan Regresi Berganda Untuk Data Dalam Studi Kecerdasan Emosional. DIDAKTIKA: Jurnal Kependidikan, 12(2), 103-116.
Gujarati, D. N., & Porter, D. C. (2020). Basic Econometrics. New York: McGraw-Hill Education.
Harizahayu, H., Hermanto, K., & Yuniarti, R. R. (2023). Analisis Viral Marketing Pada Online Customer Terhadap Minat Pembelian Melalui Tiktok Shop Dengan Regresi Linier Sederhana. Jurnal Sains Matematika dan Statistika, 9(2), 31-40.
Isha, Chaudhary, A. S., & Chaturvedi, D. K. (2020). Effects of Activation Function and Input Function of ANN for Solar Power Forecasting. In Advances in Data and Information Sciences: Proceedings of ICDIS 2019 (pp. 329-342). Singapore: Springer Singapore.
Ju, X., Brennan, D. S., & Spencer, A. J. (2014). Age, period and cohort analysis of patient dental visits in Australia. BMC Health Services Research, 14(1), 13.
Li, P., Kong, D., Tang, T., Su, D., Yang, P., Wang, H., ... & Liu, Y. (2019). Orthodontic treatment planning based on artificial neural networks. Scientific reports, 9(1), 2037.
Lo Brano, V., Ciulla, G., & Di Falco, M. (2014). Artificial neural networks to predict the power output of a PV panel. International Journal of Photoenergy, 2014(1), 193083.
Montgomery, D. C., Peck, E. A., & Vining, G. G. (2021). Introduction to linear regression analysis. John Wiley & Sons.
Sari Rochman, E. M., Rachmad, A., Syakur, M. A., & Suzanti, I. O. (2018, January). Method extreme learning machine for forecasting number of patients’ visits in dental poli (A case study: Community Health Centers Kamal Madura Indonesia). In Journal of Physics: Conference Series (Vol. 953, p. 012133). IOP Publishing.
Zhang, Z. (2016). A gentle introduction to artificial neural networks. Annals of Translational medicine, 4(19), 370.
Copyright (c) 2025 International Journal of Science and Society

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

.png)

.jpg)
.png)

.png)
.png)
.png)
1.png)

.jpg)



-modified.png)
-modified.png)


-modified.png)


