Molecular Detection of Leprosy: A Literature Review

  • Hersa Firda Kartika Universitas Andalas, Padang, Indonesia
  • Tutty Ariani Universitas Andalas, Padang, Indonesia
Keywords: Leprosy, PCR, Resistance.

Abstract

Leprosy is an infectious disease caused by the bacterium Mycobacterium leprae, which can lead to permanent damage to the skin, nerves, and tissues. Early diagnosis is crucial to prevent further complications. Molecular technology has emerged as a significant tool in enhancing the accuracy and speed of leprosy diagnosis. By employing techniques such as Polymerase Chain Reaction (PCR) and genetic analysis, bacterial DNA detection can be performed even at the early stages of infection, when clinical symptoms are not yet apparent. Additionally, this technology allows for the identification of different bacterial strains, providing insights into the epidemiology and transmission patterns of the disease. The application of molecular technology also has the potential to improve the monitoring of treatment effectiveness and resistance of therapy regiments. Although challenges remain in accessibility and implementation of this technology in countries with high prevalence, innovations in molecular diagnosis offer new hope for the control and eradication of leprosy globally. Further research and investment in healthcare infrastructure are essential to maximize the potential of this technology in the diagnosis and management of leprosy.

References

Sarode, G., Sarode, S., Anand, R., Patil, S., Jafer, M., Baeshen, H., & Awan, K. H. (2020). Epidemiological aspects of leprosy. Disease-a-Month, 66(7), 100899.

Barua, S. (2017). Global leprosy situation: historical perspective, achievements, challenges and future steps. IAL textbook of leprosyp, 45-56.

Sharma, M., & Singh, P. (2022). Advances in the diagnosis of leprosy. Frontiers in Tropical Diseases, 3, 893653.

Gama, R. S., Leite, L. A., Colombo, L. T., & Fraga, L. A. D. O. (2020). Prospects for new leprosy diagnostic tools, a narrative review considering ELISA and PCR assays. Revista da Sociedade Brasileira de Medicina Tropical, 53, e20200197.

Lopes-Luz, L., Saavedra, D. P., Fogaça, M. B. T., Bührer-Sékula, S., & Stefani, M. M. D. A. (2023). Challenges and advances in serological and molecular tests to aid leprosy diagnosis. Experimental Biology and Medicine, 248(22), 2083-2094.

Adams, L. B. (2021). Susceptibility and resistance in leprosy: Studies in the mouse model. Immunological Reviews, 301(1), 157-174.

Matsuoka, M. (2010). Drug resistance in leprosy. Japanese journal of infectious diseases, 63(1), 1-7.

Devita, A., Ibrahim, F., Menaldi, S. L. S. W., Budianti, A., & Yasmon, A. (2019). Detection of Mycobacterium leprae using real-time PCR in paucibacillary leprosy patients with negative acid-fast bacilli smears. Medical Journal of Indonesia, 28(4), 351-7.

Pathak, V. K., Singh, I., Turankar, R. P., Lavania, M., Ahuja, M., Singh, V., & Sengupta, U. (2019). Utility of multiplex PCR for early diagnosis and household contact surveillance for leprosy. Diagnostic microbiology and infectious disease, 95(3), 114855.

Kupsch, C., & Gräser, Y. (2021). The potential of molecular diagnostics in routine dermatology. In Dermatophytes and Dermatophytoses (pp. 339-353). Cham: Springer International Publishing.

Mota, D. S., Guimarães, J. M., Gandarilla, A. M. D., Filho, J. C. B. S., Brito, W. R., & Mariúba, L. A. M. (2022). Recombinase polymerase amplification in the molecular diagnosis of microbiological targets and its applications. Canadian Journal of Microbiology, 68(6), 383-402.

Diana, D., & Harish, M. C. (2024). qPCR detection of Mycobacterium leprae DNA in urine samples of leprosy patients using the Rlep gene target. Frontiers in Molecular Biosciences, 11, 1435679.

Hashem, O., Khodair, H. M., & Abd El-Samee, H. S. (2020). Polymerase chain reaction versus slit skin smear in diagnosis of leprosy; a cross-sectional study. International Journal of Medical Arts, 2(3), 650-654.

Siwakoti, S., Rai, K., Bhattarai, N. R., Agarwal, S., & Khanal, B. (2016). Evaluation of polymerase chain reaction (PCR) with slit skin smear examination (SSS) to confirm clinical diagnosis of leprosy in eastern Nepal. PLoS neglected tropical diseases, 10(12), e0005220.

Martinez, A. N., Talhari, C., Moraes, M. O., & Talhari, S. (2014). PCR-based techniques for leprosy diagnosis: from the laboratory to the clinic. PLoS Neglected Tropical Diseases, 8(4), e2655.

Machado, A. S., Lyon, S., Rocha‐Silva, F., Assunção, C. B., Hernandez, M. N., Jorge, D. S., ... & Caligiorne, R. B. (2020). Novel PCR primers for improved detection of Mycobacterium leprae and diagnosis of leprosy. Journal of applied microbiology, 128(6), 1814-1819.

Tatipally, S., Srikantam, A., & Kasetty, S. (2018). Polymerase chain reaction (PCR) as a potential point of care laboratory test for leprosy diagnosis—a systematic review. Tropical medicine and infectious disease, 3(4), 107.

Sarath, I. M., Joseph, N. M., & Jamir, I. (2023). Quantitative real-time polymerase chain reaction for detection of Mycobacterium leprae DNA in tissue specimens from patients with leprosy. The American Journal of Tropical Medicine and Hygiene, 109(2), 345.

Manta, F. S., Barbieri, R. R., Moreira, S. J., Santos, P. T., Nery, J. A., Duppre, N. C., ... & Moraes, M. O. (2019). Quantitative PCR for leprosy diagnosis and monitoring in household contacts: A follow-up study, 2011–2018. Scientific reports, 9(1), 16675.

Li, X., Meng, B., Zhang, Z., Wei, L., Chang, W., Wang, Y., ... & Lu, K. (2025). qPrimerDB 2.0: an updated comprehensive gene-specific qPCR primer database for 1172 organisms. Nucleic Acids Research, 53(D1), D205-D210.

Dwivedi, P., Sharma, M., & Singh, P. (2023). Multiplex PCR-based RFLP assay for early identification of prevalent Mycobacterium leprae genotypes. Diagnostic Microbiology and Infectious Disease, 107(4), 116084.

Green, M. R., & Sambrook, J. (2019). Nested polymerase chain reaction (PCR). Cold Spring Harbor Protocols, 2019(2), pdb-prot095182.

Wen, Y., Xing, Y., Yuan, L. C., Liu, J., Zhang, Y., & Li, H. Y. (2013). Whole-blood nested-PCR amplification of M. leprae-specific DNA for early diagnosis of leprosy. The American Journal of Tropical Medicine and Hygiene, 88(5), 918.

Chen, X., He, J., Liu, J., You, Y., Yuan, L., & Wen, Y. (2019). Nested PCR and the TaqMan SNP Genotyping Assay enhanced the sensitivity of drug resistance testing of Mycobacterium leprae using clinical specimens of leprosy patients. PLoS Neglected Tropical Diseases, 13(12), e0007946.

Musa, S., Hemberle, T., Bensch, S., Palinauskas, V., Baltrūnaitė, L., Woog, F., & Mackenstedt, U. (2024). Raising the bar: genus-specific nested PCR improves detection and lineage identification of avian haemosporidian parasites. Frontiers in cellular and infection microbiology, 14, 1385599.

Maladan, Y., Lestari, C. W., Tanjung, R., Cahyani, V. D., & Rokhmad, M. F. (2018). Molecular detection mutation of rpoB gene Mycobacterium leprae in relapse and default of leprosy patient in jayapura city, papua. Health Sci J Indones, 9(1), 31-36.

Deps, P. D. (Ed.). (2023). Hansen’s disease: A complete clinical guide. Springer Nature.

Li, X., Li, G., Yang, J., Jin, G., Shao, Y., Li, Y., ... & Zhang, L. (2022). Drug resistance (dapsone, rifampicin, ofloxacin) and resistance-related gene mutation features in leprosy patients: a systematic review and meta-analysis. International Journal of Molecular Sciences, 23(20), 12443.

Lukito, A. A., Paralaga, I. B. K. B., & Supradnyan, I. K. H. (2024). The growing threat of antimicrobial resistance in Mycobacterium leprae: A literature review. Intisari Sains Medis, 15(3), 1324-1332.

Zivarifar, H., Ahrari, F., & Karbalaei, M. (2024). Computational investigation of the global prevalence of multidrug resistant Mycobacterium leprae: A systematic review and meta-analysis. Journal of Clinical Tuberculosis and Other Mycobacterial Diseases, 37, 100495.

Published
2026-01-23
How to Cite
Kartika, H. F., & Ariani, T. (2026). Molecular Detection of Leprosy: A Literature Review. International Journal of Science and Society, 8(1), 113-125. https://doi.org/10.54783/ijsoc.v8i1.1608